A two-level urban traffic control for autonomous vehicles to improve network-wide performance

Tamás Tettamanti ^a, Arash Mohammadi ^b Houshyar Asadi ^b, <u>István Varga ^a</u>

^a Dept. of Control for Transportation and Vehicle Systems, Budapest University of Technology and Economics, Hungary

^b Institute for Intelligent Systems Research and Innovation, Deakin University, Australia

Motivation:

Manual versus autonomous vehicles
Also on traffic network level

Autonomous vehicles at junctions \rightarrow autonomous intersection without physical traffic lights

Junction traffic model

 $\vec{S}(k+1) = \vec{S}(k) + \vec{d}\left(\vec{S}(k)\right) \cdot v(k) \cdot T$

To avoid collision, condition $|d_A - d_B| > d_{min}$ must be valid at all times.

This constraint is considered later in the control design.

Emission model was also considered in the control design

- Traffic emission mainly consists of CO, NO_x, HC, and CO₂.
- For microscopic (vehicle based) emission the COPERT IV model was adopted:

 $ef(v) = \alpha_2^p v^2 + \alpha_1^p v + \alpha_0^p$, where α_i^p denotes the emission parameters for pollutant p

Network traffic model

 $n_z(k+1) = n_z(k) + T\left[\sum_{w,z} \alpha_{w,z} q_{w,z}(k) - q_z(k)\right]$

q(n) [veh/h] Macroscopic Fundamental Diagram (MFD)

Two level optimization using SUMO traffic simulator and MATLAB

also click on an item to sel

🍼 🕞 🧶 🚺 💽 🕞 Delay(ms): 140

MATLAB

Low level control in order to avoid collision

→ Nonlinear Model Predictive Control (MPC)

Highest mobility Lowest emission

J(k), $\min_{\substack{u(k+l-1)}}$ $u(k+l-1) \in \mathbb{U},$ **Constrained** optimization s.t. $x(k+l) \in \mathbb{X},$ l = 1, 2, ..., K

 $J(k) = \sum_{i=1}^{K} \sum_{j=1}^{N_{vehicles}} \left[\alpha [1+p_i] v_i^2(k+l) + \beta [v_i(k+l) - v_i(k+l+1)]^2 + \gamma e f_i^2 (v_i(k+l)) \right],$

 $D = [d_{il}]_{N_{vehicles} \times K}$,

Priority parameter

 $\min(D) > d_{\min}$

Avoid collision

Acceptable distance

Macroscopic level control

Priority parameter is calculated based on the MFD model:

 $p_{Z} = \begin{cases} 0, & n_{Z} \leq n_{Z}^{*} \\ \frac{n_{Z} - n_{Z}^{*}}{n_{Z}^{*}}, & n_{Z} > n_{Z}^{*} \end{cases}$

Simulations

MATLAB+SUMO (TraCI) http://www.dlr.de/ Test network with 4 intersections Prediction and control horizons = 20 seconds MPC optimizer: nonlinear (fmincon)

Visual results

Actuated (time gap based actuated control)

Autonomous intersection control

The comparison of network mobility between the traditional and proposed methods.

The comparison of CO_2 emission (based on HBEFA v3.1 data) between the traditional and proposed methods.

Conclusion and future work

- The performance of proposed control was justified:
 - High performance
 - Higher mobility
 - Lower emission
- Problems to overcome within the control design:
 - Disturbance can be present in the system, e.g. pedestrian crossing
 - Solution for the transition period (when traditional and autonomous cars are running together)

Thank you for your attention!

www.traffic.bme.hu tettamanti@mail.bme.hu Dept. of Control for Transportation and Vehicle Systems, Budapest University of Technology and Economics

www.deakin.edu.au/iisri arashm@deakin.edu.au Institute for Intelligent Systems Research and Innovation, Deakin University

DITI TUTE FOR LLIGENT SYSTEMS ARCH AND INNOVATION

